Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate

Painting -Hippias' Curve

American History Museum

Hippias' Curve
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer
  • Hippias' Curve
  • Diagram for Painting Hippias' Curve
  • Diagram from Page 39 of Petr Beckmann’s book A History of Pi (1970)
  • Diagram forPainting Hippias' Curve

    Object Details

    referenced

    Hippias

    painter

    Johnson, Crockett

    Description

    This painting is a construction of Crockett Johnson, relating to a curve attributed to the ancient Greek mathematician Hippias. This was one of the first curves, other than the straight line and the circle, to be studied by mathematicians. None of Hippias's original writings survive, and the curve is relatively little known today. Crockett Johnson may well have followed the description of the curve given by Petr Beckmann in his book The History of Pi (1970). Crockett Johnson's copy of Beckmann’s book has some light pencil marks on his illustration of the theorem on page 39 (see figure).
    Hippias envisioned a curve generated by two motions. In Crockett Johnson's own drawing, a line segment equal to OB is supposed to move uniformly leftward across the page, generating a series of equally spaced vertical line segments. OB also rotates uniformly about the point O, forming the circular arc BQA. The points of intersection of the vertical lines and the arc are points on Hippias's curve. Assuming that the radius OK has a length equal to the square root of pi, the square AOB (the surface of the painting) has area equal to pi. Moreover, the height of triangle ASO, OS, is √(4 / pi), so that the area of triangle ASO is 1.
    The painting has a gray border and a wood and metal frame. The sections of the square and of the regions under Hippias's curve are painted in various pastel shades, ordered after the order of a color wheel.
    This oil painting is #114 in the series. It is signed on the back: HIPPIAS' CURVE (/) SQUARE AREA = (/) TRIANGLE " = 1 = [ . .] (/) Crockett Johnson 1973.

    Location

    Currently not on view

    Credit Line

    Ruth Krauss in memory of Crockett Johnson

    date made

    1973

    ID Number

    1979.1093.76

    accession number

    1979.1093

    catalog number

    1979.1093.76

    Object Name

    painting

    Physical Description

    masonite (substrate material)
    wood (frame material)
    metal (frame material)

    Measurements

    overall: 83.2 cm x 83.2 cm x 3.1 cm; 32 3/4 in x 32 3/4 in x 1 1/4 in

    See more items in

    Medicine and Science: Mathematics
    Science & Mathematics
    Crockett Johnson
    Art

    Data Source

    National Museum of American History

    Metadata Usage

    CC0

    Link to Original Record

    https://n2t.net/ark:/65665/ng49ca746a5-1658-704b-e053-15f76fa0b4fa

    Record ID

    nmah_694700

    Discover More

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting Numbers in a Spiral

    Where Art Meets Math

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    About

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Resources

    arrow-up Back to top
    Home
    • Facebook facebook
    • Instagram instagram
    • LinkedIn linkedin
    • YouTube youtube

    • Contact Us
    • Get Involved
    • Shop Online
    • Job Opportunities
    • Equal Opportunity
    • Inspector General
    • Records Requests
    • Accessibility
    • Host Your Event
    • Press Room
    • Privacy
    • Terms of Use