Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate

Painting - Curve Tangents (Fermat)

American History Museum

Curve Tangents (Fermat)
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer
  • Curve Tangents (Fermat)
  • Diagram for Painting Curve Tangents (Fermat)
  • Diagram from James R. Newman, The World of Mathematics, p. 131
  • Diagram from James R. Newman, The World of Mathematics, p. 132
  • Diagram for Painting Curve Tangents (Fermat)

    Object Details

    referenced

    Fermat, Pierre de

    painter

    Johnson, Crockett

    Description

    The French lawyer and mathematician Pierre de Fermat (1601–1665) was one of the first to develop a systematic way to find the straight line which best approximates a curve at any point. This line is called the tangent line. This painting shows a curve with two horizontal tangent lines. Assuming that the curve is plotted against a horizontal axis, one line passes through a maximum of a curve, the other through a minimum. An article by H. W. Turnbull, "The Great Mathematicians," published in The World of Mathematics by James R. Newman, emphasized how Fermat's method might be applied to find maximum and minimum values of a curve plotted above a horizontal line (see his figures 14 and 16). Crockett Johnson owned and read the book, and annotated the first figure. The second figure more closely resembles the painting.
    Computing the maximum and minimum value of functions by finding tangents became a standard technique of the differential calculus developed by Isaac Newton and Gottfried Leibniz later in the 17th century.
    Curve Tangents is painting #12 in the Crockett Johnson series. It was executed in oil on masonite, completed in 1966, and is signed: CJ66. The painting has a wood and metal frame.

    Location

    Currently not on view

    Credit Line

    Ruth Krauss in memory of Crockett Johnson

    date made

    1966

    ID Number

    1979.1093.07

    catalog number

    1979.1093.07

    accession number

    1979.1093

    Object Name

    painting

    Physical Description

    masonite (substrate material)
    wood (frame material)
    metal (frame material)

    Measurements

    overall: 48.2 cm x 63.5 cm; 19 in x 25 in

    See more items in

    Medicine and Science: Mathematics
    Science & Mathematics
    Crockett Johnson
    Art

    Data Source

    National Museum of American History

    Metadata Usage

    CC0

    Link to Original Record

    https://n2t.net/ark:/65665/ng49ca746a5-1a13-704b-e053-15f76fa0b4fa

    Record ID

    nmah_694631

    Discover More

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting Numbers in a Spiral

    Where Art Meets Math

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    About

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Resources

    arrow-up Back to top
    Home
    • Facebook facebook
    • Instagram instagram
    • LinkedIn linkedin
    • YouTube youtube

    • Contact Us
    • Get Involved
    • Shop Online
    • Job Opportunities
    • Equal Opportunity
    • Inspector General
    • Records Requests
    • Accessibility
    • Host Your Event
    • Press Room
    • Privacy
    • Terms of Use