Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate

Painting - Conic Curve (Apollonius)

American History Museum

Conic Curve (Apollonius)
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer
  • Conic Curve (Apollonius)
  • Diagram for Painting Conic Curve (Apollonius)
  • Diagram from James R. Newman, The World of Mathematics, p. 143

    Object Details

    referenced

    Apollonius of Perga

    painter

    Johnson, Crockett

    Description

    In ancient times, the Greek mathematician Apollonius of Perga (about 240–190 BC) made extensive studies of conic sections, the curves formed when a plane slices a cone. Many centuries later, the French mathematician and philosopher René Descartes (1596–1650) showed how the curves studied by Apollonius might be related to points on a straight line. In particular, he introduced an equation in two variables expressing points on the curve in terms of points on the line. An article by H. W. Turnbull entitled "The Great Mathematicians" found in The World of Mathematics by James R. Newman discussed the interconnections between Apollonius and Descartes, and apparently was the basis of this painting. The copy of this book in Crockett Johnson's library is very faintly annotated on this page. Turnbull shows variable length ON, with corresponding points P on the curve.
    The analytic approach to geometry taken by Descartes would be greatly refined and extended in the course of the seventeenth century.
    Johnson executed his painting in white, purple, and gray. Each section is painted its own shade. This not only dramatizes the coordinate plane but highlights the curve that extends from the middle of the left edge to the top right corner of the painting.
    Conic Curve, an oil or acrylic painting on masonite, is #11 in the series. It was completed in 1966 and is signed: CJ66. It is marked on the back: Crockett Johnson 1966 (/) CONIC CURVE (APOLLONIUS). It has a wooden frame.

    Location

    Currently not on view

    Credit Line

    Ruth Krauss in memory of Crockett Johnson

    date made

    1966

    ID Number

    1979.1093.06

    catalog number

    1979.1093.06

    accession number

    1979.1093

    Object Name

    painting

    Physical Description

    masonite (substrate material)
    wood (frame material)

    Measurements

    overall: 84.3 cm x 74 cm x 3.5 cm; 33 3/16 in x 29 1/8 in x 1 3/8 in

    See more items in

    Medicine and Science: Mathematics
    Science & Mathematics
    Crockett Johnson
    Art

    Data Source

    National Museum of American History

    Metadata Usage

    CC0

    Link to Original Record

    https://n2t.net/ark:/65665/ng49ca746a5-1934-704b-e053-15f76fa0b4fa

    Record ID

    nmah_694624

    Discover More

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting Numbers in a Spiral

    Where Art Meets Math

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    About

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Resources

    arrow-up Back to top
    Home
    • Facebook facebook
    • Instagram instagram
    • LinkedIn linkedin
    • YouTube youtube

    • Contact Us
    • Get Involved
    • Shop Online
    • Job Opportunities
    • Equal Opportunity
    • Inspector General
    • Records Requests
    • Accessibility
    • Host Your Event
    • Press Room
    • Privacy
    • Terms of Use