Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate

Painting -Approximation of Pi to .0001

American History Museum

Approximation of Pi to .0001
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer
  • Approximation of Pi to .0001
  • Diagram for Painting Approximation of Pi to .0001

    Object Details

    painter

    Johnson, Crockett

    Description

    In this painting, Crockett Johnson continued his exploration of ways to find rectilinear figures of area approximately equal to pi with another of his own constructions. He took advantage of the fact that the square root of two is 1.414214, while pi is approximately 3.141597. By constructing a length of one tenth the √2 and adding it to length three, he had a length 3.1414214 which, in his language, is an approximation of pi to .0001.
    Here he assumed that the two large overlapping circles both have diameter two, and the smaller circle diameter one. The three blue and white squares then have sides of length one and diagonals of length √2. Suppose (as Crockett Johnson does) that one marks off a length of 1/10 along the side of the rightmost square, and erects a perpendicular. It will cut the diagonal of the small square to form a right triangle that has hypotenuse of length equal to one tenth √2, as desired. This then serves as the radius of a small circular arc, and is added on to the length of the sides of the three unit squares to form an approximate value of pi.
    A diagram from Crockett Johnson's papers presents the mathematics of his construction.
    The painting is #101 in the series. It has a black border and is unframed. It shows two overlapping circles of the same size, a smaller of half the diameter, and the arc of a still smaller circle. The circles are divided by straight lines into turquoise and white sections on the right side, which form the area approximately equal in area to one of the large circles. The length approximately equal to pi is across the bottom. Sections at the tleft side are in dark purple and black.

    Location

    Currently not on view

    Credit Line

    Ruth Krauss in memory of Crockett Johnson

    date made

    1970-1975

    ID Number

    1979.1093.68

    catalog number

    1979.1093.68

    accession number

    1979.1093

    Object Name

    painting

    Physical Description

    masonite (substrate material)

    Measurements

    overall: 61 cm x 82 cm x .6 cm; 24 in x 32 5/16 in x 1/4 in
    overall: 25 in x 2 in x 34 in; 63.5 cm x 5.08 cm x 86.36 cm

    See more items in

    Medicine and Science: Mathematics
    Science & Mathematics
    Crockett Johnson
    Art

    Data Source

    National Museum of American History

    Metadata Usage

    CC0

    Link to Original Record

    https://n2t.net/ark:/65665/ng49ca746a5-2db2-704b-e053-15f76fa0b4fa

    Record ID

    nmah_694692

    Discover More

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Mathematical Paintings of Crockett Johnson

    Painting Numbers in a Spiral

    Where Art Meets Math

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    About

    Painting of a isosceles triangular shape with a rounded base. Shades progress from dark to lighter tints of purple to show pendulum motion

    Resources

    arrow-up Back to top
    Home
    • Facebook facebook
    • Instagram instagram
    • LinkedIn linkedin
    • YouTube youtube

    • Contact Us
    • Get Involved
    • Shop Online
    • Job Opportunities
    • Equal Opportunity
    • Inspector General
    • Records Requests
    • Accessibility
    • Host Your Event
    • Press Room
    • Privacy
    • Terms of Use