Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate

Hypotrochoids, Kinematic Model by Martin Schilling, series 24, model 3, number 331

American History Museum

Geometric Model, Hypotrochoids, Kinematic Model by Schilling
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer
  • Geometric Model, Hypotrochoids, Kinematic Model by Schilling
  • Geometric Model, Hypotrochoids, Kinematic Model by Schilling

    Object Details

    maker

    Schilling, Martin

    Description

    Around 1900, American mathematicians introduced ideas to their students using physical models like this one. This model is the third in a series of kinematic models sold by the German firm of Schilling to show a mechanical method for generating mathematical curves.
    The name hypotrochoid comes from the Greek word hypo, which means under, and the Latin word trochus, which means hoop. Thus hypotrochoids are curves formed by tracing a point on the radius or extension of the radius of a circle rolling around the inside of another stationary circle.
    Hypotochoids are members of the family of curves called trochoids, curves that are generated by tracing the motion of a point on the radius of a circle as it rolls along another curve. They include the cycloids (see item 1982.0795.05) and epitrochoids (see item 1982.0795.01).
    An infinite number of hypotrochoids can be formed, depending on the distance of the tracing point from the center of the rolling circle. The ratio of the radius of the rolling disc to the radius of the outer ring will determine the number of nodes the hypotochoid will have. In this model, the curves each have five nodes. Hypotochoids, for which the tracing point is on the extension of the radius, form curves that resemble petalled flowers and are called roses. The Spirograph toy produces various types of hypotrochoids. (See item 2005.0055.2) In the 18th century, it was found that shaping the sides of gear teeth and the valley between teeth by using trochoidal curves reduced the torque of the rotating gears and allowed them to rotate more efficiently.
    This model consists of a stationary toothed metal ring (with teeth on the inner edge of the ring) of radius 80 mm. A toothed metal disc of radius 32 mm is attached to a brass arm of 7 cm that can be rotated by turning a crank below the baseplate. As the arm is rotated, the disc rolls around the inside of the ring. Three points lie along the radius of the disk and trace corresponding curves, or roulettes, on the glass overlay.
    The blue point on the circumference of the disc traces a blue five-pointed star shape referred to as a hypocycloid. The green point on the radius of the disc traces a green curve inside the ring, and the red point on the extension of the radius of the disc traces a curve that extends past the radius of the ring. The German title of this model is: Erzeugung der Hypotrochoiden als soche mit freiem Centrum.
    References:
    Schilling, Martin, Catalog Mathematischer Modelle für den höheren mathatischen Unterricht, Halle a.s., Germany, 1911, pp 56-57. Series 24, group 1, model 3.
    An online demonstration can be found at http://mathworld.wolfram.com/Hypotrochoid.html

    Location

    Currently not on view

    Credit Line

    Gift of the Department of Mathematics, The University of Michigan

    date made

    ca 1900

    ID Number

    1982.0795.02

    catalog number

    1982.0795.02

    accession number

    1982.0795

    Object Name

    geometric model

    Physical Description

    metal (overall material)
    glass (overall material)
    paper (overall material)
    leather (overall material)

    Measurements

    overall: 5.8 cm x 22 cm x 27 cm; 2 9/32 in x 8 21/32 in x 10 5/8 in

    place made

    Germany

    See more items in

    Medicine and Science: Mathematics
    Science & Mathematics
    Kinematic Models

    Data Source

    National Museum of American History

    Subject

    Mathematics
    Engineering

    Metadata Usage

    CC0

    Link to Original Record

    https://n2t.net/ark:/65665/ng49ca746aa-8ea6-704b-e053-15f76fa0b4fa

    Record ID

    nmah_1213881

    Discover More

    Mathematical model comprised of two black metal bowtie shapes. One is offset to the bottom right of the other.

    Resources

    Mathematical model comprised of two black metal bowtie shapes. One is offset to the bottom right of the other.

    Kinematic Models

    Mathematical model comprised of two black metal bowtie shapes. One is offset to the bottom right of the other.

    Kinematic Models

    arrow-up Back to top
    Home
    • Facebook facebook
    • Instagram instagram
    • LinkedIn linkedin
    • YouTube youtube

    • Contact Us
    • Get Involved
    • Shop Online
    • Job Opportunities
    • Equal Opportunity
    • Inspector General
    • Records Requests
    • Accessibility
    • Host Your Event
    • Press Room
    • Privacy
    • Terms of Use