Skip to main content Skip to main navigation
heart-solid My Visit Donate
Home Smithsonian Institution IK development site for ODI
Press Enter to activate a submenu, down arrow to access the items and Escape to close the submenu.
    • Overview
    • Museums and Zoo
    • Entry and Guidelines
    • Museum Maps
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
    • Overview
    • Exhibitions
    • Online Events
    • All Events
    • IMAX & Planetarium
    • Overview
    • Topics
    • Collections
    • Research Resources
    • Stories
    • Podcasts
    • Overview
    • For Caregivers
    • For Educators
    • For Students
    • For Academics
    • For Lifelong Learners
    • Overview
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
    • Overview
    • Our Organization
    • Our Leadership
    • Reports and Plans
    • Newsdesk
heart-solid My Visit Donate
  1. Home
  2. forward-slash
  3. About
  4. forward-slash
  5. Newsdesk
  6. forward-slash
  7. News Releases
  8. forward-slash
  9. As the Ocean Heats Up Hungrier Predators Take Control

About

  • Overview
  • Our Organization
    • Board of Regents
    • Museums and Zoo
    • Research Centers
    • Cultural Centers
    • Education Centers
    • General Counsel
    • Office of Human Resources
    • Office of Equal Opportunity
    • Office of Sponsored Projects
    • Office of Protection Services
  • Our Leadership
  • Reports and Plans
    • Annual Reports
    • Strategic Plan
    • Smithsonian Dashboard
  • Newsdesk
    • News Releases
    • Media Contacts
    • Photos and Video
    • Media Kits
    • Fact Sheets
    • Visitor Stats
    • Secretary and Admin Bios
    • Filming Requests

As the Ocean Heats Up Hungrier Predators Take Control

Marine Predation Intensifies in Warmer Waters; Could Reshape Ocean Communities as Climate Changes

News Release

June 9, 2022

Person in scuba suit floats underwater next to marine experiment

Media Contact

Kristen Goodhue

  • envelope GoodhueK@si.edu
  • phone 443-482-2325

A hotter ocean is a hungrier ocean—at least as far as fish predators are concerned. In a new field study published online June 9 in Science, Smithsonian scientists discovered predator impacts in the Atlantic and Pacific peak at higher temperatures. The effects cascade down to transform other life in the ocean, potentially disrupting balances that have existed for millennia.

“It’s taken thousands of years to get to this state, and then suddenly we’re ramping up the temperature at a much higher rate,” said Gail Ashton, lead author of the report and marine biologist with the Smithsonian Environmental Research Center (SERC). “And we don’t really know the implications of that temperature increase.” 

Past research has hinted that predators are more active in the tropics, since higher temperatures tend to increase animals’ metabolism. But empirical evidence from smaller studies was conflicting. And few studies tried to nail down the central question of how prey communities respond to the increased pressure, which could foreshadow what a warmer ocean of the future will look like.

“Warmer waters tend to favor animals high in the food chain, which become more active and need more food—and it’s their prey who pay for that increased activity,” said co-author Emmett Duffy, director of the Smithsonian’s Marine Global Earth Observatory network (MarineGEO). “This suggests that warming seas could see big shifts in the life of sensitive seabed habitats.”

Tracking Predation From Pole to Pole 

The new study took one of the largest views to date. An international team led by the Smithsonian and Temple University coordinated partners at 36 sites, running along the Atlantic and Pacific coasts of the Americas. The sites spanned from Alaska in the north to Tierra de Fuego at the tip of South America. At each site, researchers performed the same three experiments on predators and prey. 

For the first experiment, they tracked overall predator activity using “squid pops.” Designed by Duffy and the MarineGEO team, squid pops resemble cake pops at coffee shops. Scientists attach a piece of dried squid, a standard bait usable anywhere, to a stake and leave it underwater to attract fish. After one hour, the scientists checked to see how many squid pops had been devoured. The results confirmed their suspicions: At warmer sites, predation was more intense; in colder waters (below 68 degrees F), predation dropped to near zero. 

“This temperature threshold represents an ecological tipping point in these coastal marine ecosystems, above which predation intensity increases,” said Amy Freestone, co-author and associate professor of biology at Temple University. “With climate change, more coastal waters will exceed this tipping point, or warm even further, fundamentally changing how these ecosystems function.”  

Life in a Ravenous Sea

But this did not answer the more pressing question: What will a hotter, hungrier ocean mean for the rest of life in the food web?

For that, the researchers turned to their last two experiments. They looked at the stationary underwater invertebrates fish like to feast upon, like tunicates and bryozoans, to see how predators would impact their growth and abundance. In one experiment, they watched the prey colonize and grow on underwater plastic panels for three months. Some had protective cages that kept predators out, while others were left open and vulnerable. In the final experiment, they put protective cages around all the underwater prey for 10 weeks, and then uncaged half the prey communities for two more weeks.

In hotter waters, predators’ more voracious appetites left outsized marks on the prey community. Total prey biomass plunged in the tropics when prey were left unprotected. But in the coldest zones, leaving prey exposed or protected made almost no difference—suggesting predators did not pose much of a threat there. 

“We knew from previous work in Panama that predation in the neotropics can be intense,” said Mark Torchin, co-author and marine ecologist with the Smithsonian Tropical Research Institute in Panama. “However, working with our colleagues across the Americas allowed us to test the generality of this and to evaluate how the effects of predation change in colder environments.” 

The kinds of prey organisms changed with predator access as well. Predators liked eating solitary, bottle-shaped tunicates (“sea squirts”), so those prey suffered major losses in the tropics when left unprotected. Meanwhile, encrusting bryozoans (“moss animals”) flourished in the newly free space as fish largely left them alone.

Solitary tunicates filter the water and offer nooks and crannies for other organisms to settle—two important functions that bryozoans do not do quite as well. But they offer just one example of how a rise in predator activity could alter ecosystems as cooler ecosystems heat up.

“As predation changes, some species will be winners and some will be losers,” said co-author Greg Ruiz, head of SERC’s Marine Invasions Research Lab. “Some will be defended; others will be vulnerable. But we don’t know exactly how that will play out.”

Meanwhile, what will happen at the equator—where temperatures may rise even higher than what scientists can see today—remains even more of a mystery.

“We don’t really know what might happen in the tropics, because we don’t have data from those warmer temperatures,” Ashton said.

The study will be available on the journal’s website after publication. For photos, an advance copy of the article or to speak with the authors, contact Kristen Goodhue at goodhuek@si.edu. Several of the authors can give interviews in multiple languages (English, Spanish, Portuguese, French and German).

# # #

SI-217-2022


Tags

  • Research News
  • Environmental Research Center

Photos

Woman kneels to inspect marine specimen on a dock

Image

document

Dr. Gail Ashton inspects marine invertebrates

06.09.2022
Person in scuba suit floats underwater next to marine experiment

Image

document

Diver Nestor Ortiz beside an experiment

06.09.2022
Up-close of fish underwater with a small net in background

Image

document

Triggerfish

06.09.2022

Image

document

Solitary tunicates on underwater panel

06.09.2022

Image

document

Encrusting bryozoans on panel

06.09.2022
arrow-up Back to top
Home
  • Facebook facebook
  • Instagram instagram
  • LinkedIn linkedin
  • YouTube youtube

  • Contact Us
  • Get Involved
  • Shop Online
  • Job Opportunities
  • Equal Opportunity
  • Inspector General
  • Records Requests
  • Accessibility
  • Host Your Event
  • Press Room
  • Privacy
  • Terms of Use